Plasmonics in graphene at infrared frequencies
نویسندگان
چکیده
We point out that plasmons in doped graphene simultaneously enable low losses and significant wave localization for frequencies below that of the optical phonon branch Oph 0.2 eV. Large plasmon losses occur in the interband regime via excitation of electron-hole pairs , which can be pushed toward higher frequencies for higher-doping values. For sufficiently large dopings, there is a bandwidth of frequencies from Oph up to the interband threshold, where a plasmon decay channel via emission of an optical phonon together with an electron-hole pair is nonegligible. The calculation of losses is performed within the framework of a random-phase approximation and number conserving relaxation-time approximation. The measured DC relaxation-time serves as an input parameter characterizing collisions with impurities, whereas the contribution from optical phonons is estimated from the influence of the electron-phonon coupling on the optical conductivity. Optical properties of plasmons in graphene are in many relevant aspects similar to optical properties of surface plasmons propagating on dielectric-metal interface, which have been drawing a lot of interest lately because of their importance for nanophotonics. Therefore, the fact that plasmons in graphene could have low losses for certain frequencies makes them potentially interesting for nanophotonic applications.
منابع مشابه
Self-biased reconfigurable graphene stacks for terahertz plasmonics.
The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single 'control knob' that this approach offers limits the practical implementation and performance of these devices. Here we report on graphene stacks composed ...
متن کاملGraphene plasmonics for terahertz to mid-infrared applications.
In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphene's unique electrical and optical properties, tunability, long-lived collective excitation and its extreme light confinement. Here, we review the basic properties of graphene plasmons: their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping p...
متن کاملPlasmonics with two-dimensional conductors.
A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz ...
متن کاملGraphene plasmonics for tuning photon decay rate near metallic split-ring resonator in a multilayered substrate.
Study of photon decay rate is essential to various optical devices, where graphene is an emerging building block due to its electrical tunability. In this paper, we study photon decay rate of a quantum emitter near a metallic split-ring resonator, which is embedded in a multilayered substrate incorporating a graphene layer. Analyzing photon decay rate in such a complex multilayered system is no...
متن کاملDynamic control of plasmonic resonances with graphene based nanostructures
Emani, Naresh Kumar PhD, Purdue University, December 2014. Dynamic Control of Plasmonic Resonances with Graphene Based Nanostructures . Major Professors: Alexandra Boltasseva and Alexander V. Kildishev. Light incident on a metallic structure excites collective oscillations of electrons termed as plasmons. These plasmons are useful in control and manipulation of information in nanoscale dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009